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Abstract. Community detection is one of the most important and chal-
lenging problems in graph mining and social network analysis. Nonneg-
ative Matrix Factorization (NMF) based methods have been proved to
be effective in the task of community detection. However, real-world
networks could be noisy and existing NMF based community detection
methods are sensitive to the outliers and noise due to the utilization of
the squared loss function to measure the quality of graph regularization
and network reconstruction. In this paper, we propose a framework based
on the nonnegative residual matrix factorization (NRMF) to overcome
this limitation. In this method, a residual matrix, represented by the ma-
trix reconstruction error, is explicitly introduced to capture the impact
of outliers and noise. The residual matrix should be sparse intuitively
so some sparse regularization can be used to model the sparsity. Specifi-
cally, three different types of sparse regularization, i.e., Lo, L1 and Lo 1,
have been studied. Multiplicative update rules and different thresholding
operators are used to learn these lower-rank matrices. Extensive exper-
iments on benchmark networks with and without known communities
demonstrate that our framework is more robust so that it outperforms
state-of-the-art NMF based approaches in community detection task.

Keywords: Nonnegative residual matrix factorization - Community De-
tection - L, regularization.

1 Introduction

Network data is ubiquitous in our daily life, for example, social networks, road
networks, and Internet networks. Analyzing these networks is of both theoretical
and practical values. Recent years have witnessed numerous network analysis
tasks. Among these tasks community detection is one of the most important
and challenging problems. A community can be defined as a group of users that
(1) interact with each other more frequently than with those outside the group
and (2) are more similar to each other than to those outside the group [14].
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The research on community detection is beneficial for a variety of real-world
applications such as online marketing and recommendation systems.

A variety of approaches have been proposed to solve the problem of com-
munity detection in different types of networks, e.g., homogeneous networks, at-
tributed networks, and heterogeneous networks. More details about community
detection can be found in the survey paper [6]. Among these methods, Non-
negative Matrix Factorization (NMF) based methods have attracted increasing
attention since it has been proved to be effective in detecting communities and
has powerful interpretability in clustering. NMF based community detection ap-
proaches identify the hidden communities by decomposing the adjacency matrix
into lower-rank matrices [21,23]. From the perspective of statistics, NMF can
be viewed as probabilistic [10] and Bayesian models [19] by factorizing the in-
put data into distributions instead of real-value matrices. Nonnegative matrix
tri-factorization (NMTF), which extends the standard NMF, factorizes the in-
put matrix into three low-rank matrices so that it can provide more information
about the interaction between lower-rank representations. Therefore, it has been
utilized to community detection task to identify communities and learn commu-
nity interaction simultaneously [26, 14]. However, real-world networks could be
noisy. Existing NMF based community detection methods are sensitive to the
outliers and noise due to the utilization of the squared loss function to measure
the quality of graph regularization and network reconstruction [7]. The commu-
nity detection performance may be degraded by the inevitable noise.

To deal with this issue, we propose a framework based on the nonnegative
residual matrix factorization (NRMF) in this study. A residual matrix, repre-
sented by the matrix reconstruction error, is explicitly introduced to capture the
impact of outliers and noise. The residual matrix should be sparse intuitively
so some sparse regularization can be used to model the sparsity. Three different
types of norms, i.e., Ly, L1 and Lg 1, have been studied for the sparsity mod-
eling. To optimize the NRMF framework with different types of regularization,
multiplicative update rules are used to learn the lower-rank matrices and differ-
ent thresholding operators are used to learn the residual matrix corresponding
to different regularization types. To evaluate the performance of the proposed
NRMF, we conduct community detection experiments on two types of real-world
networks: networks with and without known communities.

Our contributions can be summarized as follows:

— We propose a nonnegative residual matrix factorization based framework
NRMF to detect communities. A residual matrix, which is represented by the
matrix reconstruction error, is explicitly introduced to model the impact of
outliers and noise. The residual matrix is regularized to capture the sparsity.

— We explore three different regularization types to model the sparsity, i.e., Ly,
L, and Ly ; norms, on the residual matrix. We also propose the multiplicative
update rules and different thresholding operators to optimize the objectives.

— We evaluate the effectiveness of NRMF using several real-world networks.
The experimental results demonstrate that our method outperforms state-
of-the-art NMF based methods in community detection.
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2 Related Work

Communities are groups of vertices which probably share common properties
and/or play similar roles within the graph [6]. Traditional community detection
methods aim to partition nodes into different groups such that the number of
edges between groups is minimal. For example, cut-based graph partition [9],
k-core decomposition [5] and modularity maximization [12].

Recently, NMF-based clustering approaches have also been applied in com-
munity detection. NMF as well as NMTF techniques have been used for commu-
nity detection in networks in [21] where it aims to factorize the adjacency matrix
of the given network. Bayesian version of NMF has been proposed in [18] to iden-
tify overlapping communities. Since NMTF explicitly models data interactions
through an extra latent factor, it provides better interpretability and then has
been employed in community detection. NMTF with graph regularization has
been used in [14]. REACT [16] employs two NMTF components for community
detection and role discovery . Deep Autoencoder-like NMF [24] consists of en-
coder and decoder and it aims to capture the nonlinear information in networks.
Local community detection problem has been studied in [8].

With the rapid development of deep learning, community preserving network
embedding has attracted enormous attention recently. Many methods have re-
ported promising results in community detection. For example, M-NMF [22] ex-
ploits the consensus relationship between the representations of nodes and com-
munity structure. Community Embedding (ComE) [3] is an embedding based
method for joint node embedding and community detection. DNGE [15] uses
Gaussian embedding to detect communities in dynamic networks.

Table 1: Summary of the notations.

Notation Description
n Number of nodes.
e Number of edges.
¢ Number of communities.

Apxn |Adjacency matrix of the given network.
Chxe |Community membership matrix.

Snxn |Residual matrix.
Mcx. |Community interaction matrix.
L,xn |graph Laplacian matrix.

« Trade-off parameter for the residual matrix.
8 Trade-off parameter for graph regularization.

3 Preliminary

We first summarize the notations used in this study in Table 1 and then introduce
the backgrounds of the techniques we will use in this paper.

Data could be noisy and there may exist some entries of the data corrupted
arbitrarily. To capture such noisy information in the framework of NMF, in [17,
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7] a sparse error matrix S has been introduced to capture the sparse corruption.
Thus, a robust factorization to approximate the input data matrix A is:

A~UVT + 8, 1)

where S is supposed to be sparse. To guarantee the sparsity, [17] proposed to use
Ly norm to regularize S and [7] utilized L; norm as the sparseness constraint.
Therefore, the objective function can be defined as

. T 2
fin [A—UV" = S|l (2)

Then, we will introduce the formal definitions of different norms:

— Ly Norm: Ly norm is not really a norm and it is defined as the number of
nonzero elements in the given matrix.

— L1 Norm: L; norm is the sum of the absolute values of the columns. Given
a matrix A, x,, formally

Li(A) = max Z | A, (3)

1<J<n

L1 Norm is robust to outliers because it considers the sparsity in rows.
— Ly Norm: Ly ; Norm combines L; and Ly norms. Given a matrix A, xn,
Ls.1(A) is defined as

Lo (A :Z(szvm) (4)

Lo 1 norm controls the capacity of A and also ensures A to be sparse in rows
S0 it is robust to noise and outliers.

4 The Proposed Method

In this paper, motivated by the robust NMF [17, 7], we propose a general frame-
work, which is less sensitive to noise and outliers, to detect communities. The
framework can be formulated as:

Juin J|A — CMCT = 8|7 +a-||S|l, + 8- Tr(CTLC), (5)
st. C>0,M>0,C"C=1,

where Tr(V) denotes the trance of the matrix V. L is the graph Laplacian
and defined as L = D — A where D;; = ), Ay. This framework is flexible to
incorporate different types of sparse regularization and constraints. It is worth
noting that:
— In this work we only consider undirected networks where the adjacency ma-
trix A is symmetric. This framework can be extended to directed networks
straightforwardly by changing the first term to ||[A — CM BT — §||%.
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— Empirically we find that adding the interaction matrix M and orthogonal
constraint would achieve worse performance so in the following discussion
we will simplify the objective function as:

: _ T _ 2 A 3 T
i |4~ CCT = S|4+ a- |Sll, + 8- Tr(CTLC), (6)

st.C>0,M >0,

— In this work, we exploit three different norms, Ly, L; and Lo 1, to capture
the reconstruction error, i.e., g is set to be 0, 1 and 2,1, respectively.

4.1 Optimization

The objective function in Eq. (6) is not convex for all parameters simultaneously.
We use the multiplicative update rules to solve this problem due to its good
compromise between speed and ease of implementation [11]. We will optimize
the objective with respect to one variable while fixing the other variables.

The update rules for matrices C' and M (since we will not consider M we
can simply set M = I) are similar to the standard NMF, which is defined as:

(A— S)CM + BAC
O Co GacTon 1 D0 (7)
C(A-S)C
MPMO*CTC’MCCT (8)

where o denotes the element-wise product.

The update rules for the residual matrix S is different from different norms.

Lo Regularized Residual. For Ly norm, a hard-thresholding update rule
has been used in [17]. Formally, it is define as:

L 0 if |R~LJ| S «
Sig = {Rij otherwise ©)
where R;; = (A — CCT);;.

L; Regularized Residual. For L; norm, a soft-thresholding update rule
has been used in [7]. Formally, it is define as:

~_Jo if [Rij| < §

Sis = {Rij — S sign(Ri;) otherwise (10)
where R;; = (A—CCT);;, sign(R;;) is the sign function: if R;; > 0, sign(R;;) =
1; if R;j; <0, sign(R;;) = —1; otherwise sign(R;;) = 0.

L, Regularized Residual. Ly norm is superior to Ly and L; norm
because: (1) it can model the sparsity effectively, and (2) it has a simple and
efficient solution to solve the optimization problem [13]. Based on [13], we have
the update rule forL, ; regularized S as:

A-cc’
S Segapg (11)
where D is the diagonal matrix with the j-th diagonal element which is:
1

B (12)

Dj; =
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4.2 Computational complexity

Computational complexity. For simplicity, given two matrices M, x, and
Ny« r, the computational complexity of the multiplication of M and N is O(nrf).
The complexity of updating rules in Algorithm 1 (Line 3 - 5) is O(n?c+nc?+n?).
To update S (Line 6 - 12), the complexity for Ly and L; is O(n? + nc?) and for
Ly is O(ne? + n?). By taking the number of iteration i into consideration, the
complexity is O(i(n%c + nc? +n?)).

5 Experiments

To validate the effectiveness of NRMF in community detection, we conduct
experiments on two types of real-world networks from different domains, i.e.,
networks with and without known communities. To further exploit the influence
of different regularization terms in sparsity modeling, we compare NRMF with
Lo, Ly and Ly ; regularization.

Algorithm 1 Optimization Algorithm

Input: Adjacency matrix A, number of communities ¢, trade-off parameter « and g,
regularization type ¢
Output: Community membership matrix C, community interaction matrix M and
residual matrix S
1: Initialize C, B, and S
2: while not converge do
3:  Calculate graph Laplacian L
4:  Update C according to Eq. (7)
5.  Update M according to Eq. (8)
6: if ¢ =0 then
T Update S according to Eq. (9)
8: elseif ¢ =1 then
9: Update S according to Eq. (10)

10:  else if ¢ = 2,1 then
11: Update S according to Eq. (11)
12: end if

13: end while

5.1 Datasets and Evaluation Metrics

We conduct experiments on two types of data: networks with and without known
communities. For networks with known communities, we select Football, Email,
and Wiki networks. There are 5, 42 and 19 communities in Football, Email
and Wiki networks®, respectively. For networks without known communities,

® These datasets are from http://www-personal.umich.edu/~mejn/netdata/, http:
//snap.stanford.edu/data/index.html and https://lings.soe.ucsc.edu/data.
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we select Jazz, Email-Univ and Hamsterster networks. The optimal number of
communities for each network is inferred using Louvain algorithm [1]. A brief
summary of these datasets is shown in Table 2. We employ purity and normalized
mutual information (NMI) as the evaluation metrics for networks with known
communities. Purity measures the extent to which each cluster contained data
points from primarily one class. The purity of a clustering is obtained by the
weighted sum of individual cluster purity values which defined as:

k
1
Purity = N Z maxjlc; Nty (13)
i=1

where N is number of objects, k is number of clusters, ¢; is a cluster in C', and
t; is the classification which has the max count for cluster ¢;. NMI evaluates the
clustering quality based on information theory, and is defined by normalization
on the mutual information between the cluster assignments and the pre-existing
input labeling of the classes:

2+Z(C,D)
H(C) + H(D)’
where obtained cluster C and ground-truth cluster D. The mutual information
Z(C,D) is defined as Z(C,D) = H(C) — H(C|D) and H(-) is the entropy.
For networks without known communities we use modularity as the evalua-
tion metric. Formally, modularity is defined as:

Q= % > (Aij - g:j) 6(ci, c5) (15)

j

NMI(C,D) = (14)

where m is the number of edges, A is the adjacency matrix of the input graph,
k; is the degree of node ¢ and 6(c;, ¢;) is 1 if node ¢ and node j are in the same
community and 0 otherwise.

Table 2: Summary of data sets used in the experiments where n, e and ¢ denote
the number of nodes, edges, and communities, respectively.

Data n e c

Known Footb?,ll 115| 613 |5
Communities Email 1005(25571|42
Wiki 2405(17981(19

Unknown J.azz . 198 | 2742 | 4
Communities Email-Univ [1133] 5451 |11
Hamsterster|1858(12534|32

5.2 Baseline Methods

To demonstrate our model detects communities more effectively than other NMF
based community detection approaches, we select several representative NMF
based methods as our baselines:
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Table 3: Community detection performance w.r.t. Purity.
Football| Email | Wiki

NMF 0.9074 | 0.5834 | 0.2025
ONMF 0.8754 | 0.5734|0.3177
PNMF 0.9153 | 0.6002 | 0.2531
BNMF 0.9067 | 0.5587 | 0.3497
GNMF 0.9143 | 0.5675 | 0.2561
BigClam 0.9209 | 0.6358 | 0.2995
NSED 0.8994 |0.6072|0.2773

NRMF-Lo | 0.8914 | 0.5801 | 0.2880
NRMF-L; |0.9335|0.6843|0.3774
NRMF-L51|0.9335 |0.7021|0.4154

NMEF [21]: NMF is the basic matrix factorization framework. To make a fair
comparison, the objective function for NMF is |A — CCT|J2.

Orthogonal NMF (ONMF) [4]: ONMEF is a variant of NMF by enforcing
orthogonal constraints on the community membership matrix C, i.e., CTC = I.
In particular, since we add contraint to C, the objective is [|A — CMCT|%.

Projected NMF (PNMF) [25]: PNMF directly projects the original net-
work to a subspace by minimizing ||A — CCT A||2..

Bayesian NMF (BNMF) [19]: BNMF is a bayesian NMF model. It models
the matrix factorization in a Bayesian fashion.

Graph regularized NMF (GNMF) [2]: GNMF incorporates an affinity
graph which is constructed to encode the geometrical information to NMF, and
then seeks a matrix factorization which respects the graph structure.

BigClam [23]: a cluster affiliation model. It relaxes the graph fitting problem
into a continuous optimization problem to find overlapping communities.

Nonnegative Symmetric Encoder-dedcoder (NSED) [20]: NSED is
a nonnegative symmetric encoder-decoder approach proposed for community
detection. It extracts the community membership by integrating a decoder and
an encoder into a unified loss function.

For our framework, we compare three variants: Ly regularized (NRMF-Ly),
L, regularized (NRMF-L;) and Lo ; regularized NRMF (NRMF-Lg ;).

5.3 Experimental Results

The experimental results on networks with known communities are shown in Ta-
ble 3 based on Purity and Table 4 based on NMI. Based on these results, it can
be observed that: (1) NRMF-Ly ; achieves the best performance in community
detection based on both the purity and NMI metrics. It indicates Ly ; regular-
ization can better capture the sparsity of the residual matrix compared to other
types of regularization such as Ly and L;. (2) NRMF methods with Ly and Lo ;
sparse regularization outperform other NMF based approaches. It demonstrates
that our proposed framework can effectively identify the communities because
it explicitly takes noise into consideration when factorizing the input adjacency
matrix. (3) NRMF methods with Ly performs worse than some other NMF based
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Table 4: Community detection performance w.r.t. NMI.
Football| Email | Wiki

NMF 0.8973 |0.6234 | 0.1876
ONMF 0.8843 | 0.6451|0.2108
PNMF 0.9035 | 0.6211 | 0.2404
BNMF 0.9142 | 0.6021 | 0.2411
GNMF 0.9038 | 0.5893 | 0.1976
BigClam 0.8963 | 0.5796 | 0.2722
NSED 0.9096 | 0.6845 | 0.2659

NRMF-Lo | 0.8903 |0.6746 | 0.2235
NRMF-L; | 0.9214 | 0.6746 | 0.2626
NRMF-L;1|0.9233 |0.7032|0.2737

methods. It shows that Ly norm is not a good choice for sparsity modeling. This
may because Ly norm only considers the number of nonzero elements but ignore
the values of these elements. (4) It is interesting to observe that ONMF and
GNMF achieve worse performance than other NMF based methods including
the standard NMF. This may result from that real-world network data is very
sparse and constraints on the latent representations may be difficult to achieve.

Table 5: Community detection performance w.r.t. Modularity.

Jazz |Email-Univ|Hamsterster
NMF 0.4136 | 0.2876 0.2347
ONMF 0.4221 0.2751 0.2378
PNMF 0.4201 0.4015 0.1313
BNMF 0.4161 0.3963 0.1226
GNMF 0.1852 0.2747 0.2060
BigClam 0.4005 0.4024 0.2796
NSED 0.4231 0.3987 0.2553
NRMF-Lo [0.3843| 0.3369 0.1892
NRMF-L; |0.4355 0.4448 0.2856
NRMF-L, 1|0.4463| 0.5011 0.2903

The experimental results on networks without known communities are shown
in Table 5 based on Modularity. From these results, we can draw the same
conclusions to that on the networks with known communities. Since modularity is
a measure only based on the network structure (ground-truth community labels
may be related not only to structures but also semantics), good performance
on modularity further demonstrate the effectiveness of our framework from the
structural perspective.

5.4 Parameter Sensitivity

The NRMF involves two parameters shown in Eq. (5): a controls the trade-off
of redisual modeling and 8 controls the graph regularization. In this section,
we examine how the different choices of parameters affect the performance of
NRMF in community detection. Specifically, we measure the NMI and Purity
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Fig. 2: Parameter sensitivity of 5 on Email data.

on Email data and Modularity on Email-Univ data. The results are shown in
Fig. 1, 2 and 3. Note that only NRMF with L, ; is evaluated because it achieves
the best performance in the experiments above.

It can be observed from these results that: (1) Large « is preferred in order
to achieve better NMI and Purity in detecting communities. In specific, when «
is 0.6 - 0.7, the performance is the best. (2) In contrast, smaller 8 brings better
community detection performance. In the experiments, 5 = 0.1 is the best choice
w.r.t. both NMI and Purity. (3) For the networks without ground-truth labels,
the choices of « and S are different. In Email-Univ, smaller « and larger g give
better performance. In this specific experiment, a = 0.1 and 8 = 0.8 would be
the best parameters.
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Fig. 3: Parameter sensitivity results on Email-Univ data.
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6 Conclusion

We proposed NRMF, a novel framework for community detection, that addresses
the limitation of existing NMF based community detection approaches: being
sensitive to noise and outliers. In NRMF, a residual matrix has been introduced
explicitly to capture the noise. To model the sparsity of the NRMF, we exploit
three types of regularization, i.e., Lo, Ly and Ls ;. To optimize the objective w.r.t
different regularization terms, different updating rules have been employed. Our
experimental study demonstrated that NRMF effectively preserves community
structures and captures noisy information, outperforming state-of-the-art NMF
based methods in community detection. On the basis of NRMF, several new
research lines can be pursued. For example, it is interesting to exploit more
advanced optimization methods or extend it to attributed networks. We leave
these extensions for future work.
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